

Investor Presentation

November 7, 2018

CO Forward Looking Statements

This presentation contains forward-looking statements within the meaning of the "safe harbor" provisions of The Private Securities Litigation Reform Act of 1995. All statements, other than statements of historical facts, contained in this presentation, including statements regarding the Company's strategy, future operations, future financial position, future revenue, projected costs, prospects, plans, and objectives of management, are forward-looking statements. The words "anticipate," "believe," "continue," "could," "estimate," "expect," "intend," "may," "plan," "potential," "predict," "project," "target," "should," "would," and similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words. Forward-looking statements in this presentation include statements regarding the Company's 2022 goals, achieving preclinical proof-of-concept for additional programs and establishing alliances. The Company may not actually achieve the plans, intentions, or expectations disclosed in these forward-looking statements, and you should not place undue reliance on these forward-looking statements. Actual results or events could differ materially from the plans, intentions and expectations disclosed in these forward-looking statements as a result of various factors, including: uncertainties inherent in the initiation and completion of preclinical studies and clinical trials and clinical development of the Company's product candidates; whether interim results from a clinical trial will be predictive of the final results of the trial or the results of future trials; expectations for regulatory approvals

to conduct trials or to market products; availability of funding sufficient for the Company's foreseeable and unforeseeable operating expenses and capital expenditure requirements; and other factors discussed in the "Risk Factors" section of the Company's most recent Quarterly Report on Form 10-Q, which is on file with the Securities and Exchange Commission, and in other filings that the Company may make with the Securities and Exchange Commission in the future.

In addition, the forward-looking statements included in this presentation represent the Company's views as of the date of this presentation. The Company anticipates that subsequent events and developments will cause its views to change. However, while the Company may elect to update these forward-looking statements at some point in the future, it specifically disclaims any obligation to do so. These forward-looking statements should not be relied upon as representing the Company's views as of any date subsequent to the date of this presentation.

Gene Editing Unleashing Wave of Genomic Medicines

Convergence of technologies for advanced medicines

Gene editing expands and accelerates the universe of genomic medicines

Building the Preeminent Genomic Medicine Company

Editas Medicine 2022 Goals – EM22

Build on Our Current Success

At least one program from our Celgene collaboration

More than one program in ocular diseases

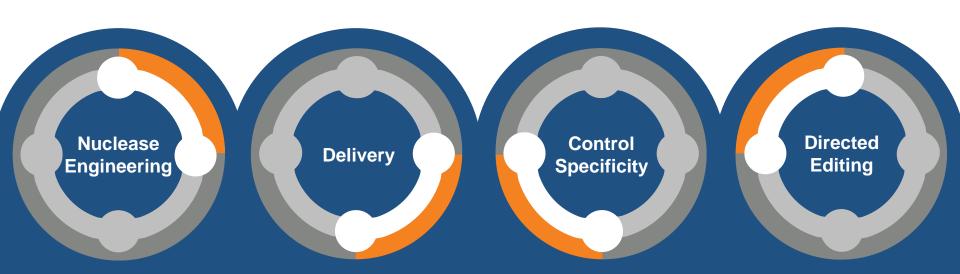
Establish New Areas & Leverage Our Platform

At least one engineered cell medicine program beyond engineered T cells in cancer

At least one program in an additional cell or tissue type or using an advanced editing modality

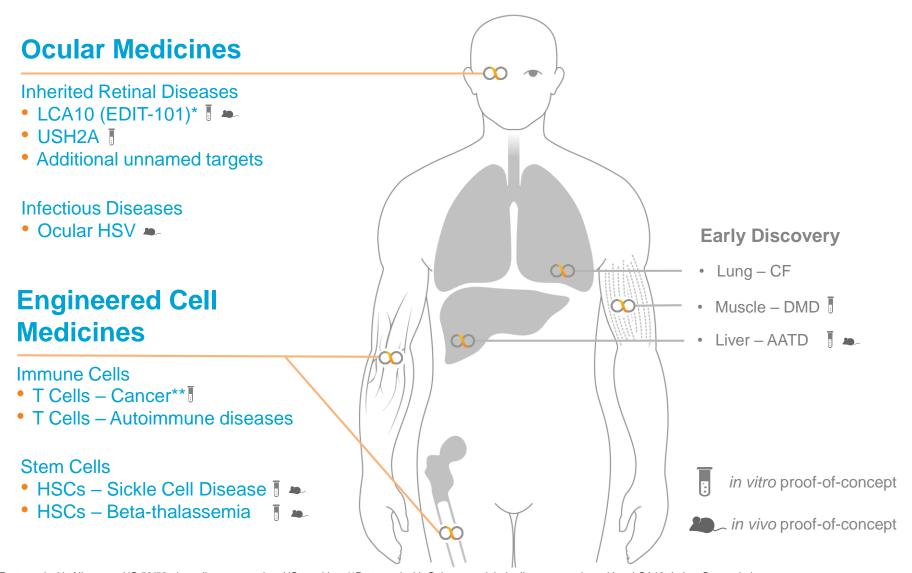
Unparalleled Platform for Genomic Medicines

Broadest Access to Genomic Targets

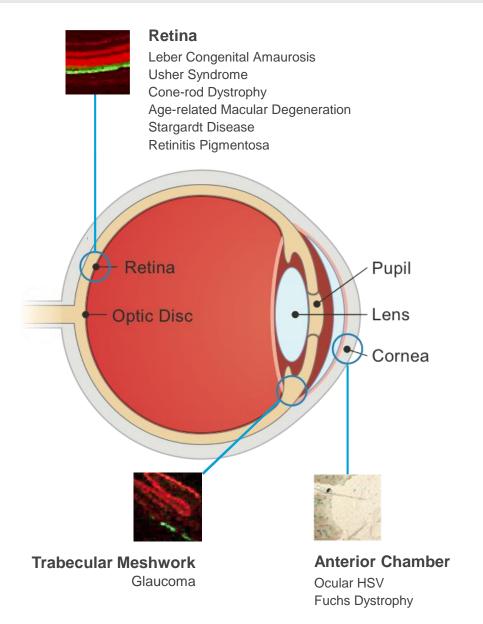

Proprietary portfolio of Cas9 and Cpf1 enzymes may directly edit ~95% of the human genome

Widest Range of Tissues and Cells

Ability to use AAVs, RNPs, and LNPs to address diseases throughout the body


Diverse Spectrum of Therapeutic Edits

Disrupt, remove, replace, or insert DNA to precisely and durably treat illness


O Developing Best-in-Class CRISPR Medicines

^{*}Partnered with Allergan - US 50/50 plus milestones and ex-US royalties; **Partnered with Celgene - global milestones and royalties; LCA10: Leber Congenital Amaurosis Type 10; USH2A: Usher Syndrome Type 2A; HSV: Herpes Simplex Virus; CF: Cystic Fibrosis; DMD: Duchenne Muscular Dystrophy; AATD: Alpha-1 Antitrypsin Deficiency; HSC: Hematopoietic Stem Cell

O Durable Medicines for Serious Eye Diseases

Hundreds of thousands of patients may benefit from durable CRISPR medicines addressing ocular diseases

Targeted local injection using proven viral vectors enables precise delivery to multiple compartments of the eye

Promising clinical and regulatory path with readily measurable endpoints and serious unmet need

CO Targeting Leading Genetic Form of Blindness

Remove genetic mutation to restore CEP290 protein and rebuild photoreceptors in

Leber Congenital Amaurosis Type 10

Degeneration of photoreceptors leading to blindness in childhood

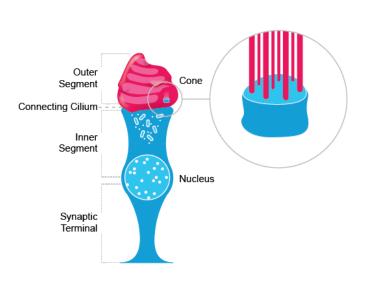
2,000 - 5,000 patients in US and Europe

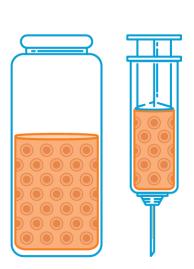
IND filed October 2018

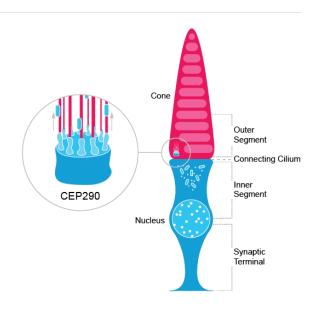
LCA10 Natural History Study underway

EDIT-101 Aims to Rescue Vision in LCA10

LCA10 Photoreceptor


Degenerates because CEP290 lacking


EDIT-101


Removes disease-causing mutation

Rescued Photoreceptor

By correcting CEP290 protein

Degeneration of outer segment but cell body remains intact

EDIT-101 subretinal injection to remove disease-causing mutation Restoration of full-length protein and rebuilding of outer segment

CEP290: Centrosomal Protein 290 © 2018 Editas Medicine

From Gene to Genomic Medicine for LCA10

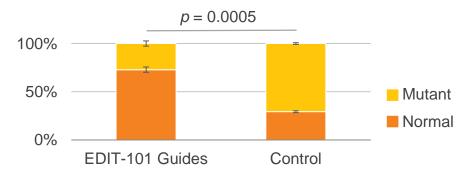
DOES EDITING RESTORE PROTEIN EXPRESSION IN PATIENT CELLS?

CAN WE EDIT TARGET CELLS IN BEST PRECLINICAL MODEL ANIMAL?

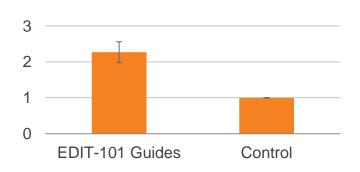
Critical Achievements Advancing EDIT-101 to Human Clinical Trials

DOES PRODUCT CANDIDATE ACHIEVE THERAPEUTIC EDITING IN HUMAN TISSUE?

DOES PRODUCT CANDIDATE HAVE SPECIFICITY FOR HUMAN TESTING?


WHAT ARE BEST CLINICAL TRIALS TO PROVE VALUE FOR PATIENTS?

EDITING APPROACH RESTORES FULL LENGTH CEP290 mRNA AND PROTEIN


Demonstrated in cells from LCA10 patients

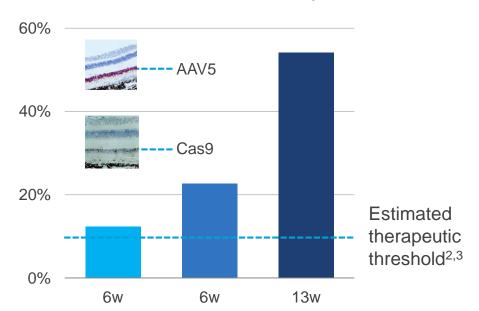
Relative Level of CEP290 mRNA

Deleting the disease-causing mutation corrects full-length mRNA for CEP290

CEP290 Protein Normalized to Control

Deleting the disease-causing mutation restores full-length **CEP290** protein

mRNA: Messenger RNA © 2018 Editas Medicine



PREDICTED THERAPEUTIC EDITING ACHIEVED IN NON-HUMAN PRIMATES

Estimated productive editing in primate photoreceptors *in vivo*¹

Delivery vehicle specifically targets photoreceptors

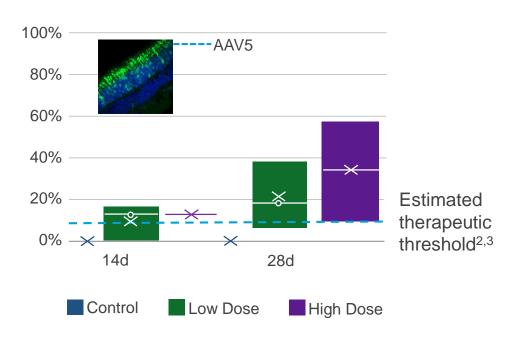
Estimated Productive Editing Non-human Primate Photoreceptors

AAV5 vector and GRK1 promoter limit expression to photoreceptors, providing a highly targeted therapy

Productive editing

with subretinal delivery in anatomically relevant animal model well above therapeutic threshold

^{1.} Editing measured across entire retina multiplied by 3.5 based on photoreceptors estimated to represent 25-30% of retina; 2. Geller, Sieving, and Green, *J. Opt. Soc. Am.*, 1992; 3. Geller and Sieving, *Vision Res.*, 1993; Guide RNAs in NHP experiments specific to NHP genome; NHP: Non-human Primate; GRK1: G Protein-Coupled Receptor Kinase 1

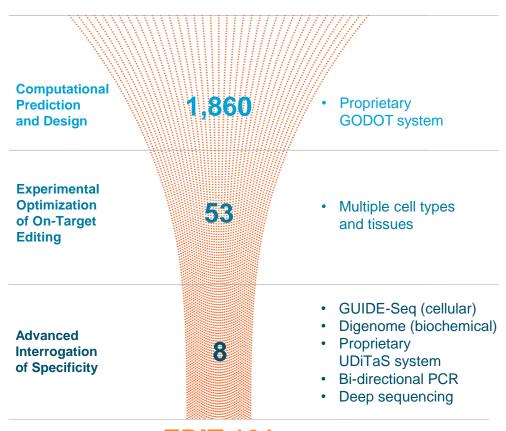


PREDICTED THERAPEUTIC EDITING **ACHIEVED IN HUMAN RETINA**

Productive editing in human retinal explant photoreceptors1

Targeted transduction of photoreceptors

Estimated Productive Editing Human Retinal Explant Photoreceptors


AAV5 vector selectively targets human photoreceptor cells

Product candidate **EDIT-101** achieves predicted therapeutic levels of editing in human photoreceptors

COMPREHENSIVE METHODS TO IDENTIFY EFFICIENT AND SPECIFIC GUIDE RNAs

Proprietary computational, biochemical, and cellular approaches

Systematic approach to guide **RNA** characterization

using a suite of comprehensive, empirical, and unbiased methods

Identified and selected product candidates with

no detected off-targets

verified in cells and tissues

SETTING THE STAGE FOR INTERVENTIONAL TRIALS

Ongoing Natural History Study

Patients

~40 patients, aged 3 and above

Objectives

Characterize patients, assessments, and rate of change and validate endpoints

Sites

6 to 8 sites in US and Europe

Follow-up

6 visits over 1 year

PHASE 1/2 TRIAL DESIGN IN DEVELOPMENT

Design

Open-label, dose escalation

Patients

~10 to 20 patients with IVS26 mutation

Comparator

Non-randomized comparison to natural history, contralateral eye, and patient baseline

Duration

1 year evaluation of efficacy and safety

O Pursuing Usher Syndrome Type 2A Medicine

Rescue vision by restoring USH2A protein using

similar product construct and delivery to **EDIT-101**

Progressive vision loss leading to blindness due to degeneration of photoreceptors

4,000 patients with target mutation

Additional 10,000 potentially addressable

Collaboration with Drs. Eric Pierce and Qin Liu to validate gene editing approach in transgenic mouse model

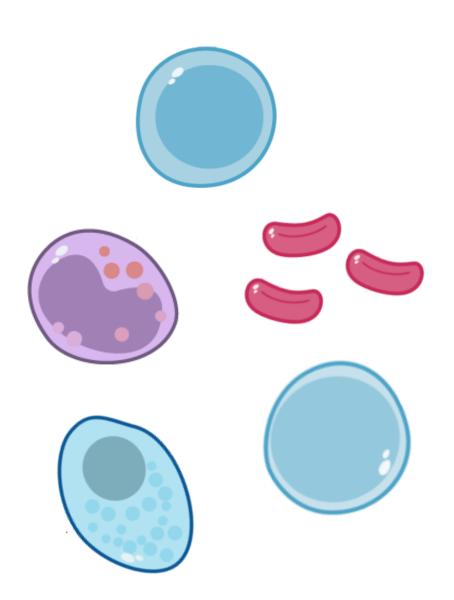
Preventing Blindness from Ocular HSV

Knock out critical viral genes

to disable the latent virus

> Recurrent stromal ocular herpes simplex virus leading to corneal scarring and blindness

25,000 per year in developed economies


> 135,000 globally

in vivo proof-of-concept in rabbit model

> presented at **ARVO 2018 Annual Meeting**

OD Developing Transformative Engineered Cell Medicines

Hematopoietic stem cells could yield multiple medicines for blood diseases including sickle cell disease and beta-thalassemia

T cells are therapeutic platform for cancer, autoimmune, and infectious diseases

Editas editing enables medicines across many additional cell types

Next-Gen Engineered T Cells for Cancer

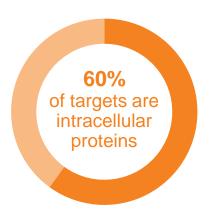
Expand range of cancers that can be treated

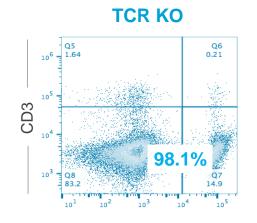
with Editas engineered CAR T and TCR cell medicines

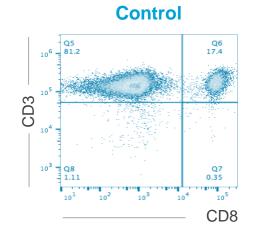
> Achieved highly efficient editing of multiple gene targets, both individually and in combination

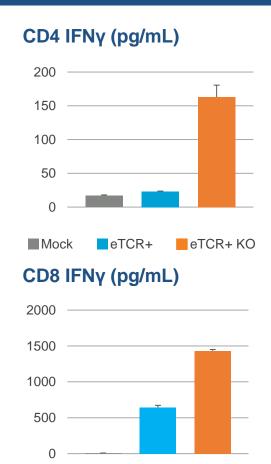
Celgene developing at-scale gene editing manufacturing process

Multiple product candidates in alliance advancing including an engineered TCR candidate for **HPV-associated** solid tumors


Next-Gen Engineered T Cells for Cancer


"Top 50" Cancer Antigen Targets¹


Nearly Complete TCR Knockout


Increase in **Functional Activity**

Rank	Antigen	Mechanism	
1	WT1	Oncogenic	
3	LMP2	Viral	
4	HPV	Viral/Oncogenic	
8	MAGE A3	Mixed	
9	P53 WT	Oncogenic	
10	NY-ESO-1 MelanA/	Prognosis	
14	MART1	Differentiation	
15	Ras Mutant	Oncogenic	
16	gp100	Differentiation	
17	p53 Mutant	Oncogenic	

Engineered HSCs for Hemoglobinopathies

Gene disruption to increase

fetal hemoglobin levels

Gene insertion to restore

adult hemoglobin expression

Sickle cell disease and beta-thalassemia causing anemia, pain crises, organ failure, and even death

Over 100,000 hospitalizations annually in US alone

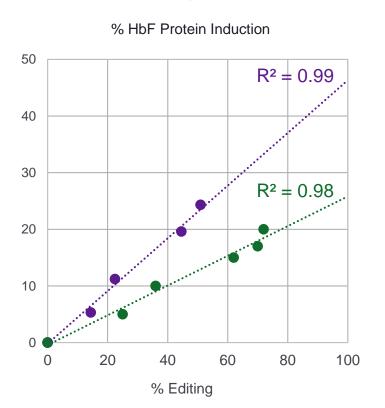
Candidates from two distinct editing strategies designed to deliver best-in-class medicines

22

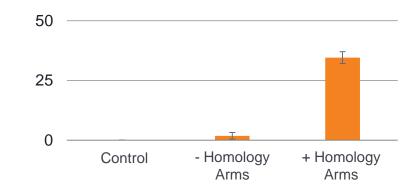
HSC: Hematopoietic Stem Cell © 2018 Editas Medicine

(C) | Aim for Best Hemoglobinopathy Medicines

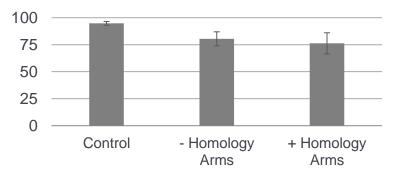
Gene Disruption


to increase fetal hemoglobin with potentially more potent edit

Gene Insertion


to restore hemoglobin expression and eliminate mutation

Editas Novel Approach to Editing β-globin Locus¹


ZFN Published Approach to Editing BCL11Ae²

% Homology Directed Repair at β-globin Locus

% Cells Viable at 48 hours

Accelerating the Business through Alliances

MEDICINES

TECHNOLOGY

OCULAR MEDICINES

ENGINEERED T CELL MEDICINES FOR CANCER

Option to license up to 5 ocular programs

Partnership with innovator in ophthalmology

\$90 million upfront plus > \$1 billion contingent milestones and tiered royalties; option for 50/50 profit split in US on 2 programs

CAR T and TCR cell medicines to treat cancer

Partnership with leader in engineered T cells for cancer

\$30 million upfront and up to \$22 million R&D funding plus ~ \$930 million milestones and tiered royalties

2017 Sets Stage for Transformative 2018

2017 Accomplishments

2018 Goals

Established Allergan strategic alliance in ocular medicines

Achieved preclinical proof-of-concept for multiple programs

Initiated LCA10 clinical natural history study

Expanded team to >110 Editors

Further advanced our intellectual property leadership position

- Submit IND for LCA10 program by mid-2018
- Report preclinical proof-of-concept for additional programs
- Advance manufacturing capabilities to enable additional IND(s) in 2019
- Establish additional important strategic alliances
- Continue to build a best-in-class organization and culture

Repairing broken genes is just the beginning

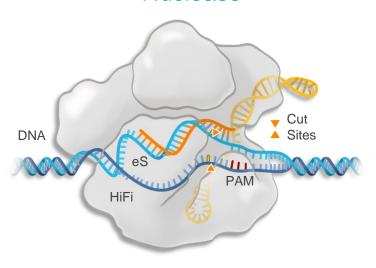
Community

Resilience

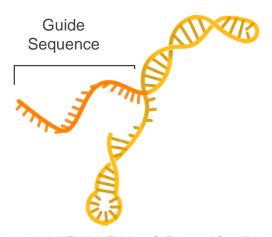
Ingenuity

Science

Passion


Revolution

Appendix

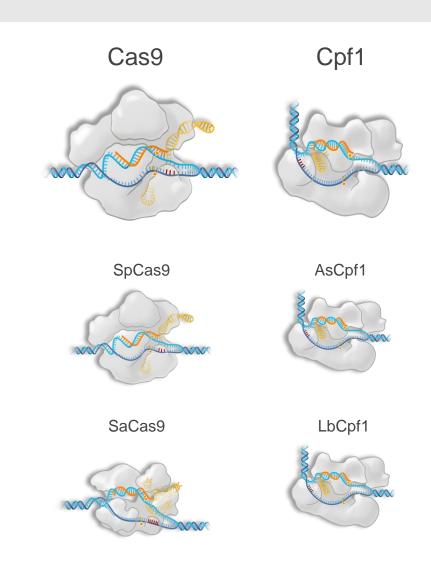


CO | CRISPR Unlocks Genome Editing

Nuclease

Guide RNA

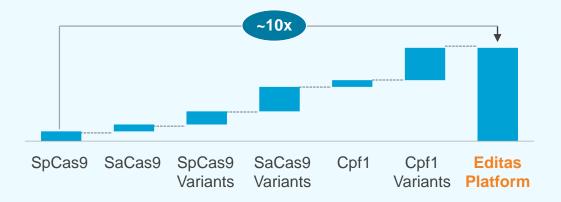
Complex of nuclease and guide RNA precisely locates and cuts genomic sites


> Ability to target multiple sites simultaneously

Nuclease can be engineered to reach more sites and to modulate cutting

Broad Toolkit of CRISPR Nucleases

We are the **only** company with multiple editing systems

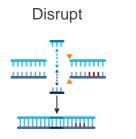

Cas9: CRISPR Associated Protein 9; Cpf1: CRISPR from Prevotella and Francisella; SpCas9: Streptococcus pyogenes Cas9; SaCas9: Staphylococcus aureus Cas9; AsCpf1: Acidaminococcus species Cpf1; LbCpf1: Lachnospiraceae bacterium Cpf1

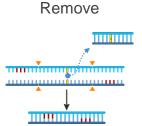
O | Platform Enables Broad Product Pipeline

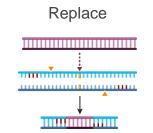
Broad Range of **Sites**

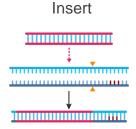
Wide **Delivery Options**

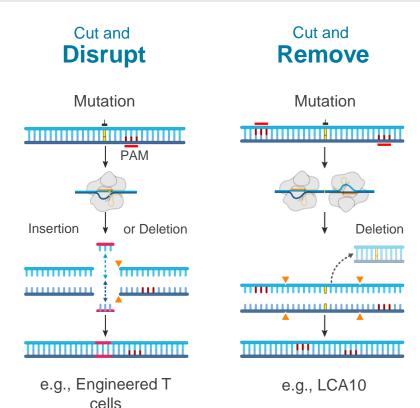
Viral Vector

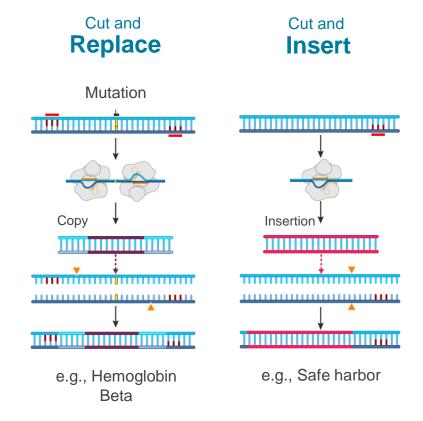



Lipid Nanoparticle




Electroporation





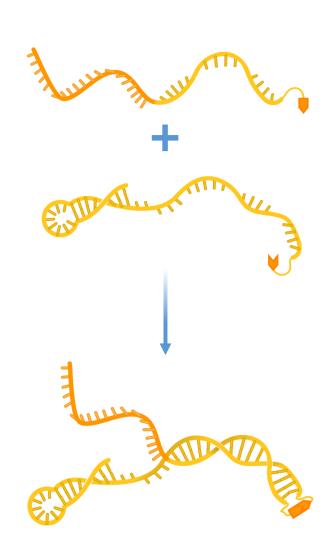
CRISPR Addresses Diverse Mutations

Non-homologous end joining typically disrupts a gene or eliminates a disease-causing mutation

Homology-directed repair and targeted insertion aim to promote expression of correct DNA sequences

Rigorous Approach to Specificity

	COMPUTATIONAL SCREEN	CELLULAR & BIOCHEMICAL ASSAYS	TARGETED SEQUENCING PANELS
# GUIDE RNA	1,000 2,000	50-100	5)—10
TARGETED		Biased Library of Targets (BLT)	Uni-directional Targeted Sequencing (UDiTaS) Bi-directional PCR
COMPREHENSIVE	GODOT	GUIDE-Seq CIRCLE-Seq Digenome	© 2018 Editas Medicine 32

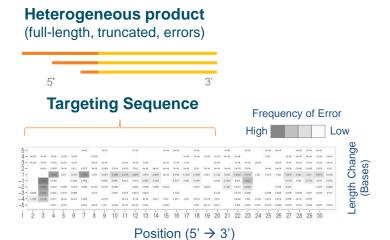


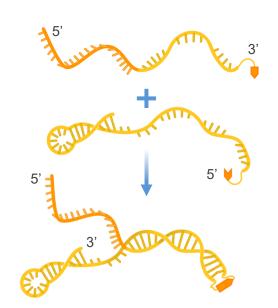
i2 Asset Acquisition: Unmatched gRNA Expertise

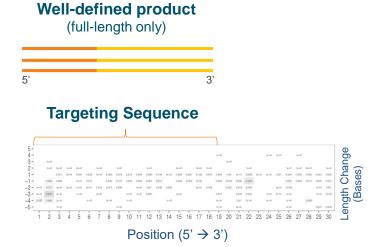
World class RNA chemistry expertise

Enables best-in-class CRISPR medicines

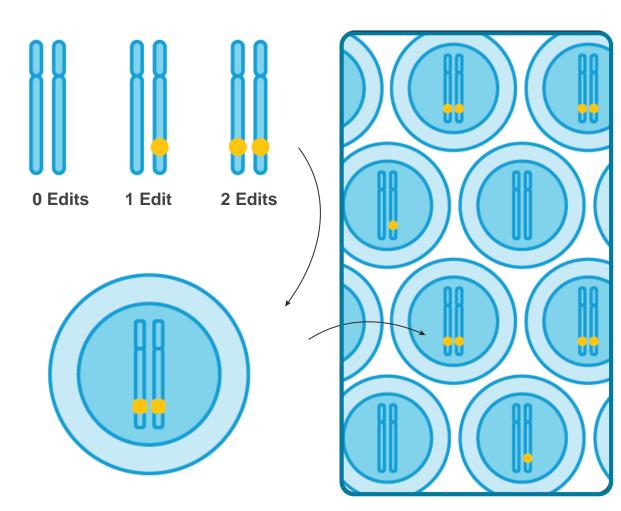
Proprietary classes of guide RNAs with distinct intellectual property

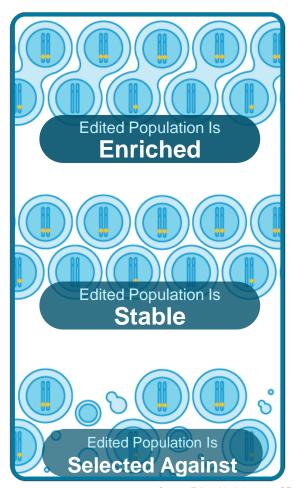



Proprietary Guide RNA Engineering


Single gRNA

Covalently Coupled **Dual gRNA**





Fundamentals of Gene Editing Medicines

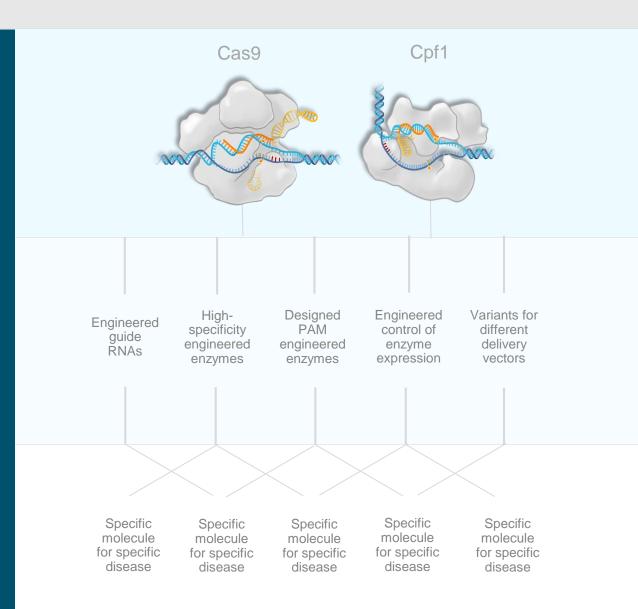
Editing Efficiency in Target Cell Type Proportion of **Target Cells Edited** Long-term Fate of Edited Cells

Unmatched Patent Position in CRISPR Gene Editing

Exclusive access to Cas9 and Cpf1

patent portfolios, which are independent of each other

Exclusive access to advanced forms


including high specificity, PAM variants, others

Over 40 issued patents

worldwide, including in United States, Europe, and Australia

Over 500 pending patent applications

from Editas Medicine and academic institutions

