

Corporate Presentation

October 7, 2019

PIONEERING THE POSSIBLE

Forward Looking Statements

This presentation contains forward-looking statements within the meaning of the "safe harbor" provisions of The Private Securities Litigation Reform Act of 1995. All statements, other than statements of historical facts, contained in this presentation, including statements regarding the Company's strategy, future operations, future financial position, future revenue, projected costs, prospects, plans, and objectives of management, are forward-looking statements. The words "anticipate," "believe," "continue," "could," "estimate," "expect," "intend," "may," "plan," "potential," "predict," "project," "target," "should," "would," and similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words. Forward-looking statements in this presentation include statements regarding the clinical trial timeline for EDIT-101 (AGN-151587) and the Company's 2022 goals. The Company may not actually achieve the plans, intentions, or expectations disclosed in these forward-looking statements, and you should not place undue reliance on these forward-looking statements. Actual results or events could differ materially from the plans, intentions and expectations disclosed in these forward-looking statements as a result of various factors, including: uncertainties inherent in the initiation and completion of preclinical studies and clinical trials and clinical development of the Company's product candidates; whether interim results from a clinical trial will be predictive of the final results of the trial or the results of future trials; expectations for regulatory approvals to conduct trials or to market products; availability of funding sufficient for the Company's foreseeable and unforeseeable operating expenses and capital expenditure requirements; and other factors discussed in the "Risk Factors" section of the Company's most recent Quarterly Report on Form 10-Q, which is on file with the Securities and Exchange Commission, and in other filings that the Company may make with the Securities and Exchange Commission in the future. In addition, the forward-looking statements included in this presentation represent the Company's views as of the date of this presentation. The Company anticipates that subsequent events and developments will cause its views to change. However, while the Company may elect to update these forward-looking statements at some point in the future, it specifically disclaims any obligation to do so. These forward-looking statements should not be relied upon as representing the Company's views as of any date subsequent to the date of this presentation.



CO Transforming Patient Lives

OUR MISSION

is to translate the promise of genome editing into a broad class of transformative genomic medicines to benefit the greatest number of patients

Pioneering the Possible

Clinical-stage company working to transform patient lives

- First in vivo CRISPR clinical trial in history (EDIT-101 for LCA10)
- EDIT-101 patient screening initiated and dosing on track for 2H19
- Rapidly translating exciting science into revolutionary medicines

Leader across CRISPR in vivo and engineered cell medicines

- Proven AAV delivery capability for in vivo **CRISPR** medicines
- Advancing engineered cell medicines to treat blood diseases and cancer
- Enabled by unparalleled platform of Cas9 and Cpf1 (Cas12a) enzymes

Strong progress towards EM22 qoals

- EDIT-101 IND accepted by FDA upon initial review
- Usher syndrome 2A (USH2A) in vivo proof of concept established
- EDIT-301 for sickle cell and beta-thalassemia INDenabling activities initiated

© 2019 Editas Medicine editasmedicine.com

2019 Achievements and Goals

ACHIEVEMENTS

- Formed collaboration with BlueRock Therapeutics to advance universal allogeneic cell medicines for cancer
- Initiated IND-enabling activities for EDIT-301 for sickle cell and beta-thalassemia
- Established in vivo proof-of-concept for Usher syndrome 2A

GOALS

EDIT-101 first patient dosing in second half

> EDIT-301 pre-clinical data in second half

> > Usher syndrome 2A ready for IND-enabling studies by year-end

EM22: Our 2022 Vision for Editas Medicine

O Developing Best-in-Class CRISPR Medicines

EDITING OUTSIDE THE BODY ENGINEERED CELL MEDICINES

OCULAR DISEASES *

Leber congenital amaurosis 10* | ---

Usher syndrome 2A | ---

Retinitis pigmentosa

Ocular HSV 🛎

CANCER

Autologous T cell medicines** Allogeneic cell medicines

BLOOD DISEASES

Sickle cell disease | -----

Beta-thalassemia 🖡 👟

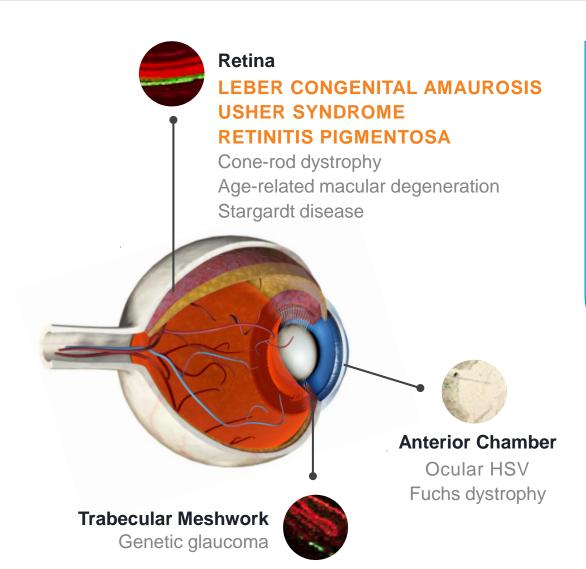
in vitro proof of biology

in vivo proof of concept

AAV delivery

EARLY DISCOVERY

Liver - AATD



Lung – CF

OD Durable Medicines for Serious Eye Diseases

Hundreds of thousands of patients

Targeted local injection with proven AAV vectors

Promising clinical and regulatory path

CO Targeting Leading Genetic Form of Blindness

Remove genetic mutation to restore CEP290 protein and rebuild photoreceptors in

Leber congenital amaurosis 10

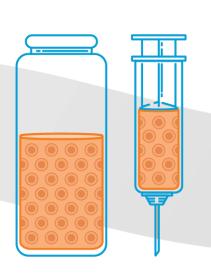
> 2,000 - 5,000Degeneration patients of photoreceptors in US and leading to Europe blindness in

childhood

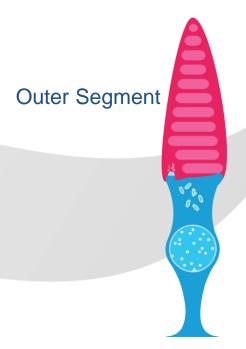
First patient dosing expected in 2H19 Allergan and editas 50/50 in US

CEP290: centrosomal protein 290 © 2019 Editas Medicine

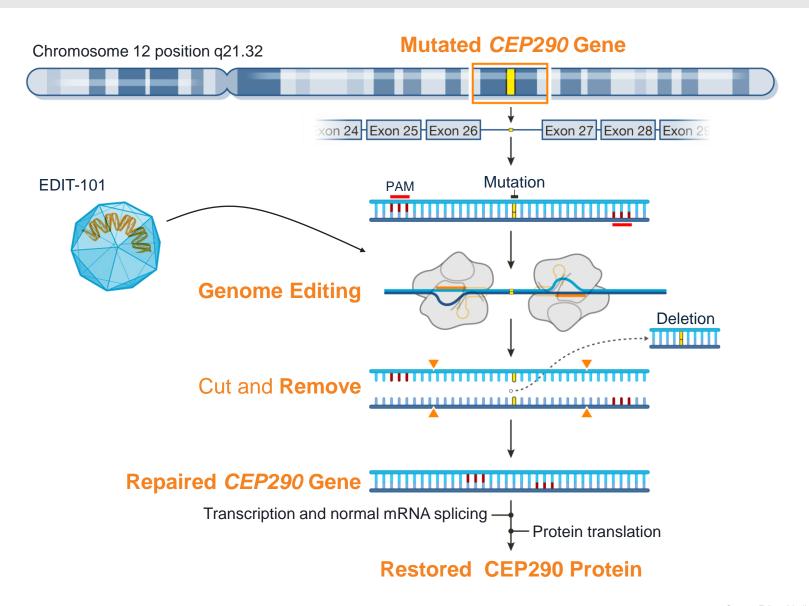
EDIT-101 Aims to Rescue Vision in LCA10


LCA10 Photoreceptor

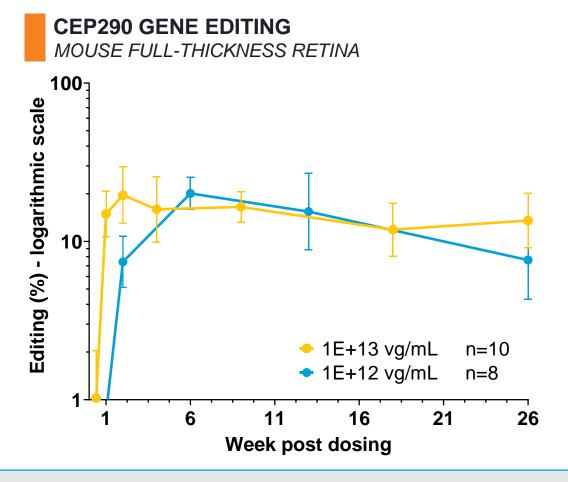
EDIT-101


Rescued Photoreceptor

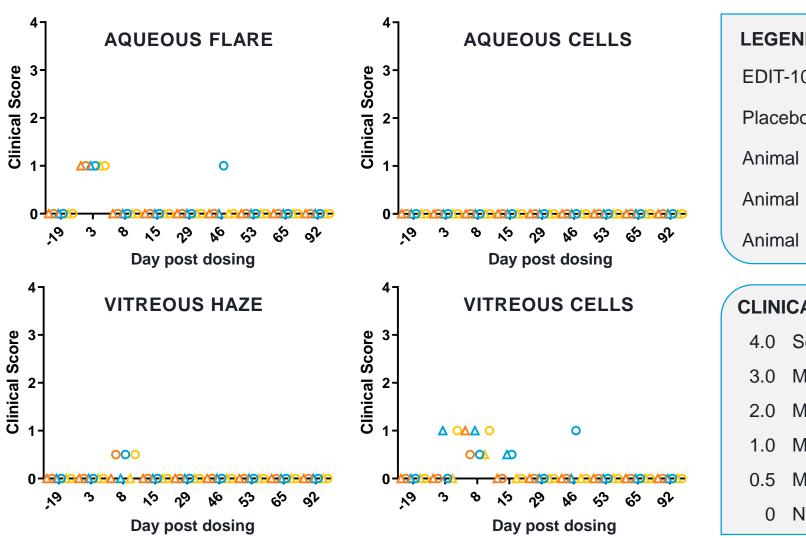
Outer segment degenerates due to CEP290 deficiency

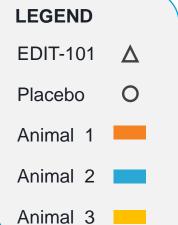

Editing removes disease-causing mutation

Outer segment regenerates with CEP290 protein



EDIT-101 Aims to Rescue Vision in LCA10


EDIT-101 Demonstrates Rapid Editing



Rapid onset of therapeutically relevant editing at AAV dose that has been safely administered to humans

EDIT-101 Well Tolerated in Non-Human Primates

CLINICAL SCORE

- Severe
- Marked
- Moderate
- Mild
- Minimal
 - None

Natural History Study Facilitating Interventional Trial

LCA10 NATURAL HISTORY STUDY

PATIENTS

~40 patients, aged 3 and above

OBJECTIVES

Characterize patients, assessments, rate of change and validate endpoints

SITES

7 sites across US and Europe

FOLLOW-UP

6 visits over 1 year; baseline data presented in April 2019

Initiated LCA10 Phase 1/2 Clinical Trial

LCA10 PHASE 1/2 TRIAL

DESIGN

Open-label, dose escalation study to evaluate safety, tolerability, and efficacy

PATIENTS

~18 patients with IVS26 mutation*

COMPARATOR

Patient's own baseline value for each efficacy measure

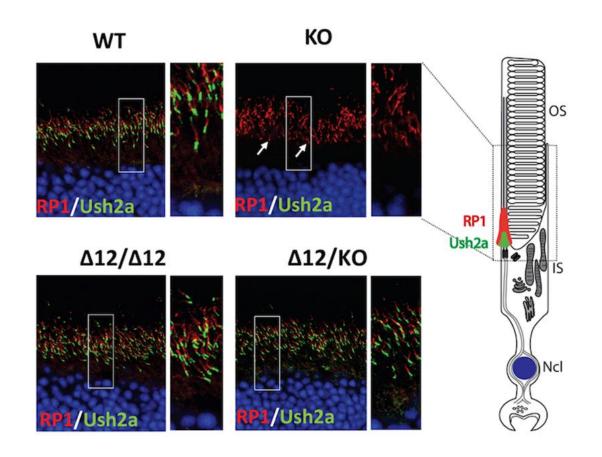
FOLLOW-UP

Core measurements every 3 months for 1st year

Pursuing Usher Syndrome 2A Medicine

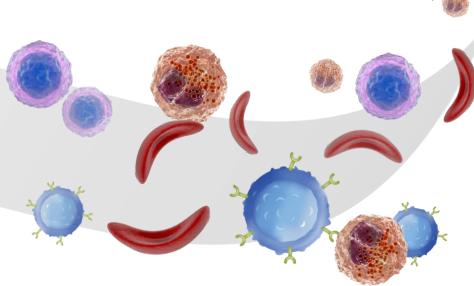
Rescue vision by restoring **USH2A** protein leveraging same proprietary enzyme, vector, and promoter as EDIT-101

Progressive vision loss leading to blindness due to degeneration of photoreceptors


4,000 patients with target mutation

Additional 10,000 potentially addressable

Editing USH2A Increases Cilia Length in vivo


Editing strategy results in desired phenotype

OD Developing Transformative Engineered Cell Medicines

Hematopoietic stem cells could yield medicines for multiple blood diseases

T cells and NK cells are therapeutic platform for cancer, autoimmune, and infectious diseases

Editas Medicine editing enables both autologous and allogeneic cell medicines

NK: natural killer © 2019 Editas Medicine

CO Towards Durable Sickle Cell Disease Medicine

Editing hematopoietic stem cells to increase fetal hemoglobin and alleviate disease

morbidity and mortality

Sickle cell disease and beta-thalassemia causing anemia, pain crises, organ failure, and mortality

Over 100,000 hospitalizations annually in US alone

designed to deliver best-in-class medicines

editing strategy

Differentiated

Harnessing Genetics to Treat Sickle Cell Disease

Three Critical Product Candidate Criteria

SUCCESSFUL **EDITING**

of long-term hematopoietic stem cells

MAINTENANCE

of normal HSC **function**

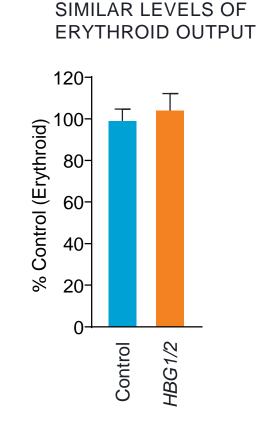
DURABLE

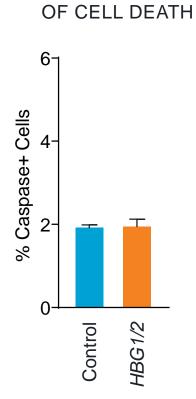
predicted therapeutic induction of fetal hemoglobin

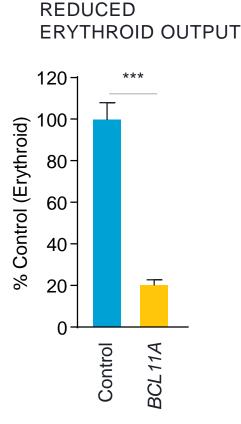
20

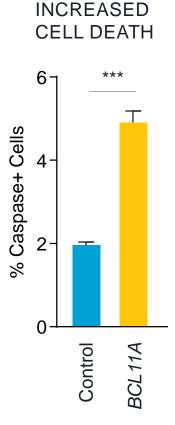
Differentiated editing strategy directly targets the genetic cause of the disease

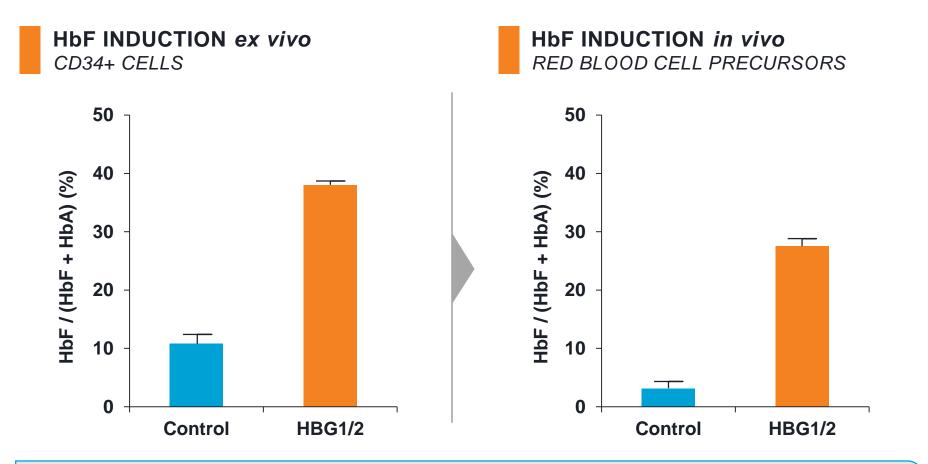
HSC: hematopoietic stem cell © 2019 Editas Medicine




Editing Strategy Maintains HSC Function


GLOBIN LOCUS EDITING EDITAS MEDICINE APPROACH




SIMILAR LEVELS

Editing Strategy Induces Robust Fetal Hemoglobin

Potential to safely and effectively induce fetal hemoglobin in vivo

Editing Strategy Achieves Product Candidate Criteria

SUCCESSFUL **EDITING**

of long-term hematopoietic stem cells

MAINTENANCE

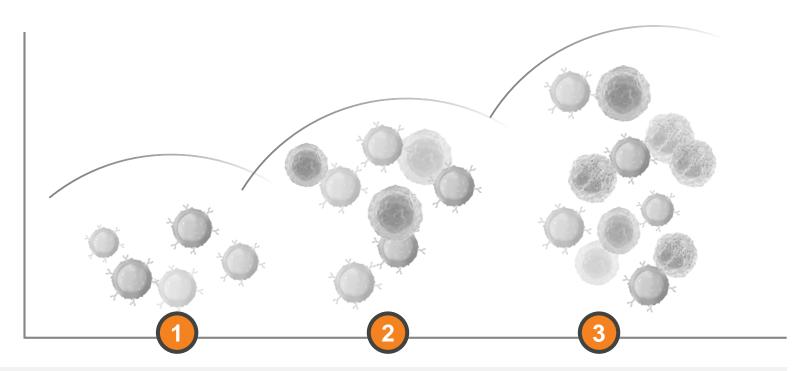
of normal HSC **function**

DURABLE

predicted therapeutic induction of fetal hemoglobin

BCL11Ae

GLOBIN LOCUS



Rapid Innovation in Cell Medicines for Cancer

24

CELL SOURCE	Patient Donor	Healthy Donor	Universal (iPSC)	
CELL TYPE	αβ T cells	NK cells, $\alpha\beta$ T cells, $\gamma\delta$ T cells	NK cells, $\alpha\beta$ T cells, $\gamma\delta$ T cells	
MULTIPLEXING	Modest	Modest	High	

iPSC: induced pluripotent stem cell © 2019 Editas Medicine

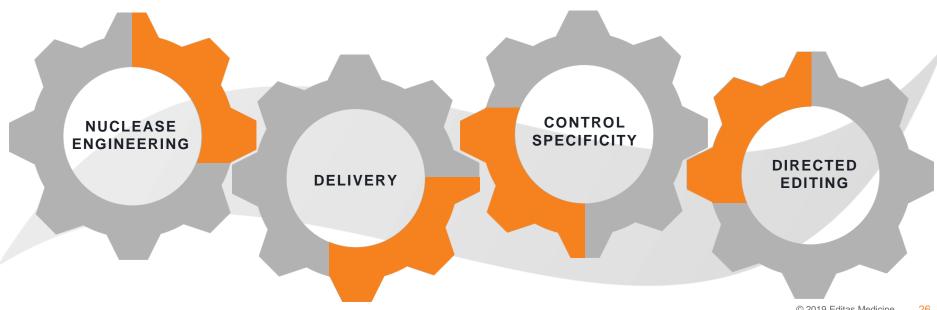
Investing to Develop Best in Class Medicines

	PATIENT DONOR	HEALTHY DONOR	UNIVERSAL (iPSC)
T CELLS (αβ and γδ)	Celgene	Celgene	Celgene
Milestones & royalties to	editas	editas	editas
NK CELLS	editas	editas	Milestones & royalties to BlueRock Therapeutics

Driving programs across both T cells and NK cells for best in class medicines to treat liquid and solid tumors

Powerful Engine for Genomic Medicines

Broadest Access to Genomic Targets


Proprietary portfolio of Cas9 and Cpf1 enzymes may directly edit ~95% of the human genome

Widest Range of Tissues and Cells

Ability to use AAVs, RNPs, and LNPs to address diseases throughout the body

Diverse Spectrum of Therapeutic Edits

Disrupt, remove, replace, or insert DNA to precisely and durably treat illness

Strong Foundation for Long-Term Leadership

PARTNERS

OCULAR MEDICINES

Option to license up to 5 ocular programs

Partnership with innovator in ophthalmology

\$90 million upfront plus > \$1 billion contingent milestones and tiered royalties; option for 50/50 profit split in US on 2 programs, including EDIT-101

ENGINEERED T CELL MEDICINES FOR CANCER

CAR T and TCR cell medicines to treat cancer

Partnership with leader in oncology

\$30 million upfront and up to \$22 million in R&D funding; ~\$930 million in contingent milestones plus tiered royalties; \$10 million in milestones achieved to date

PATENTS

BROADEST & DEEPEST PORTFOLIO OF CRISPR IP

Exclusive access to foundational Cas9 and Cpf1 patent estates

Exclusive access to multiple species and engineered forms of Cas9 and Cpf1

Over 70 issued patents and over 600 patent applications pending

Issued patents covering EDIT-101

Community

Resilience

Ingenuity

Science

Passion

Revolution

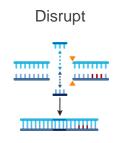
Appendix

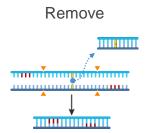
Platform Enables Broad Product Pipeline

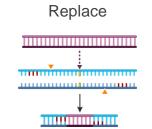
Broad Range of **Sites**

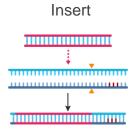
Wide **Delivery Options**

Viral Vector




Lipid Nanoparticle



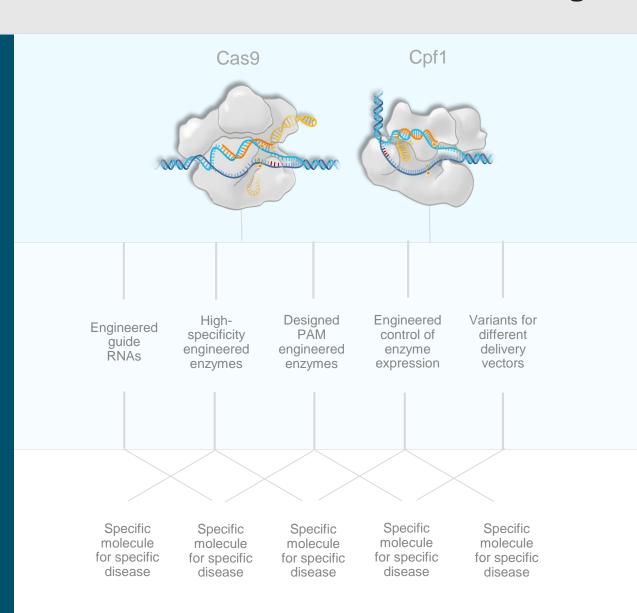

Electroporation

Unmatched Patent Position in CRISPR Gene Editing

Exclusive access to Cas9 and Cpf1

patent portfolios, which are independent of each other

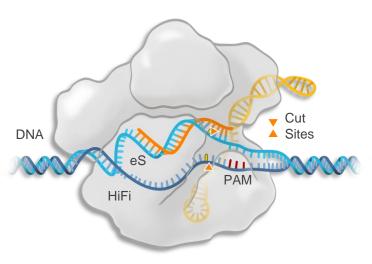
Exclusive access to advanced forms

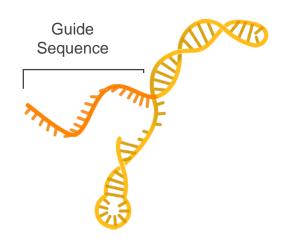

including high specificity, PAM variants, others

Over 70 issued patents

worldwide, including in United States, Europe, and Australia

Over 600 pending patent applications


from Editas Medicine and academic institutions

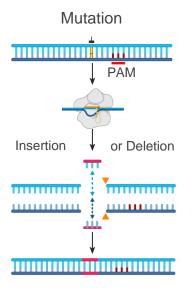


CRISPR Unlocks Genome Editing

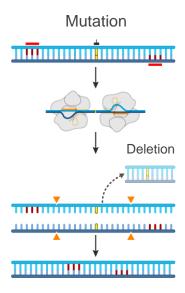
Nuclease

Guide RNA

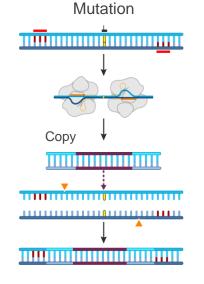
Complex of nuclease and guide RNA precisely locates and cuts genomic sites

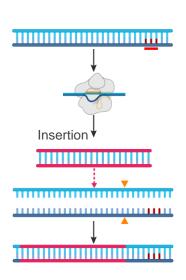

> Ability to target multiple sites simultaneously

Nuclease can be engineered to reach more sites and to modulate cutting



CO | CRISPR Addresses Diverse Mutations




Cut and Remove

Cut and **Replace**

Cut and Insert

Non-homologous end joining typically disrupts a gene or eliminates a disease-causing mutation

Homology-directed repair and targeted insertion aim to promote expression of correct DNA sequences